Karakteristik Elektron
Karakteristik Elektron |
Karakteristik Elektron
Klasifikasi
Dalam Model Standar fisika partikel, elektron termasuk ke dalam golongan partikel subatom yang disebut lepton, yang dipercayai sebagai partikel elementer. Elektron memiliki massa yang terendah di antara lepton bermuatan lainnya dan termasuk ke dalam partikel elementer generasi pertama. Generasi kedua dan ketiganya mengandung lepton bermuatan, yaitu muon dan tauon, yang identik dengan elektron dalam hal muatannya, spin, dan interaksinya, terkecuali keduanya bermassa lebih besar. Lepton berbeda dari konstituen materi lainnya seperti kuark karena lepton tidak memiliki interaksi kuat. Semua anggota golongan lepton adalah termask fermion karena semuanya memiliki spin 1⁄2.
Ciri-ciri fundamental
Massa invarian sebuah elektron adalah kira-kira 9,109 × 10−31 kilogram, ataupun setara dengan 5,489 × 10−4 satuan massa atom. Berdasarkan prinsip kesetaraan massa-energi Einstein, massa ini setara dengan energi rihat 0,511 MeV. Rasio antara massa proton dengan massa elektron adalah sekitar 1836. Pengukuran astronomi menunjukkan bahwa rasio massa proton terhadap elektron tetap bernilai sama paling tidak selama setengah usia alam semesta, seperti yang diprediksikan oleh Model Standar.
Elektron memiliki muatan listrik sebesar -1,602 × 10−19 coulomb, yang digunakan sebagai satuan standar untuk muatan partikel subatom. Di bawah ambang batas keakuratan eksperimen, muatan elektron adalah sama dengan muatan proton, namun memiliki tanda positif. Oleh karena simbol e digunakan untuk merujuk pada muatan elementer, elektron umumnya disimbolkan sebagai e−, dengan tanda minus mengindikasikan muatan negatif. Positron disimbolkan sebagai e+ karena ia memiliki ciri-ciri yang sama dengan elektron namun bermuatan positif.
Elektron memiliki momentum sudut intrinsik atau spin senilai 1⁄2. Sifat ini biasanya dinyatakan dengan merujuk elektron sebagai partikel spin-1⁄2. Untuk partikel seperti ini, besaran spinnya adalah √3⁄2 ħ manakala hasil pengukuran proyeksi spin pada sumbu apapun hanyalah dapat bernilai ±ħ⁄2. Selain spin, elektron juga memiliki momen magnetik intrinsik di sepanjang sumbu spinnya. Momen magnetik elektron kira-kira sama dengan satu magneton Bohr, dengan konstanta fisika sebesar 9,274 009 15(23) × 10−24 joule per tesla. Orientasi spin terhadap momentum elektron menentukan helisitas partikel tersebut.
Elektron tidak memiliki substruktur yang diketahui. Oleh karena itu, ia didefinisikan ataupun diasumsikan sebagai partikel titik ataupun muatan titik dan tidak beruang. Pemantauan pada satu elektron tunggal dalam perangkap Penning menunjukkan batasan atas jari-jari partikel sebesar 10−22 meter. Terdapat sebuah tetapan fisika yang disebut sebagai "jari-jari elektron klasik" yang bernilai 2,8179 ×10−15 m. Namun terminologi ini berasal dari perhitungan sederhana yang mengabaikan efek-efek mekanika kuantum. Dalam kenyataannya, jari-jari elektron klasik tidak memiliki hubungan apapun dengan struktur dasar elektron.
Terdapat partikel elementer yang secara spontan meluruh menjadi partikel yang lebih ringan. Contohnya adalah muon yang meluruh menjadi elektron, neutrino, dan antineutrino, dengan waktu paruh rata-rata 2,2 × 10−6 detik. Namun, elektron diperkirakan stabil secara teoretis: elektron merupakan partikel teringan yang bermuatan, sehingga peluruhannya akan melanggar kekekalan muatan. Ambang bawah eksperimen untuk rata-rata umur paruh elektron adalah 4,6 × 1026 tahun, dengan taraf keyakinan sebesar 90%.
Sifat-sifat kuantum
Seperti semua partikel, elektron dapat berperilaku seperti gelombang. Ini disebut sebagai dualitas gelombang-partikel dan dapat ditunjukkan menggunakan percobaan celah ganda. Sifat bak gelombang elektron mengizinkannya melewati kedua celah paralel secara bersamaan dan bukannya hanya melewati satu celah. Dalam mekanika kuantum, sifat bak gelombang suatu partikel dapat dideskripsikan secara matematis sebagai fungsi bernilai kompleks yang disebut sebagai fungsi gelombang (ψ). Ketika nilai mutlak fungsi ini di kuadratkan, nilai pengkuadratan ini akan memberikan probabilitas pemantauan suatu partikel dekat seuatu lokasi, disebut sebagai rapatan probabilitas.
Elektron yang satu dengan elektron yang lainnya tidak dapat dibedakan karena sifat fisika intrinsiknya. Dalam mekanika kuantum, hal ini berarti bahwa sepasang elektron yang berinteraksi haruslah dapat bertukar posisi tanpa adanya perubahan keadaan sistem yang terpantau. Fungsi gelombang fermion, termasuk pula elektron, adalah antisimetrik, berarti bahwa ia berubah tanda ketika dua elektron bertukaran; yakni ψ(r1, r2) = −ψ(r2, r1), dengan variabel r1 dan r2 adalah elektron pertama dan kedua. Oleh karena nilai mutlak tidak berubah ketika berubah tanda, ini berarti bahwa terdapat probabilitas yang tidak berubah. Berbeda dengan fermion, boson seperti foton memiliki fungsi gelombang simterik.
Dalam kasus antisimetri, penyelesaian fungsi gelombang untuk elektron yang berinteraksi menghasilkan probabilitas yang bernilai nol untuk tiap pasangan elektron menduduki lokasi ataupun keadaan yang sama. Hal ini dikenal dengan nama asas pengecualian Pauli. Asas ini menjelaskan banyak sifat elektron.
Seperti semua partikel, elektron dapat berperilaku seperti gelombang. Ini disebut sebagai dualitas gelombang-partikel dan dapat ditunjukkan menggunakan percobaan celah ganda. Sifat bak gelombang elektron mengizinkannya melewati kedua celah paralel secara bersamaan dan bukannya hanya melewati satu celah. Dalam mekanika kuantum, sifat bak gelombang suatu partikel dapat dideskripsikan secara matematis sebagai fungsi bernilai kompleks yang disebut sebagai fungsi gelombang (ψ). Ketika nilai mutlak fungsi ini di kuadratkan, nilai pengkuadratan ini akan memberikan probabilitas pemantauan suatu partikel dekat seuatu lokasi, disebut sebagai rapatan probabilitas.
Elektron yang satu dengan elektron yang lainnya tidak dapat dibedakan karena sifat fisika intrinsiknya. Dalam mekanika kuantum, hal ini berarti bahwa sepasang elektron yang berinteraksi haruslah dapat bertukar posisi tanpa adanya perubahan keadaan sistem yang terpantau. Fungsi gelombang fermion, termasuk pula elektron, adalah antisimetrik, berarti bahwa ia berubah tanda ketika dua elektron bertukaran; yakni ψ(r1, r2) = −ψ(r2, r1), dengan variabel r1 dan r2 adalah elektron pertama dan kedua. Oleh karena nilai mutlak tidak berubah ketika berubah tanda, ini berarti bahwa terdapat probabilitas yang tidak berubah. Berbeda dengan fermion, boson seperti foton memiliki fungsi gelombang simterik.
Dalam kasus antisimetri, penyelesaian fungsi gelombang untuk elektron yang berinteraksi menghasilkan probabilitas yang bernilai nol untuk tiap pasangan elektron menduduki lokasi ataupun keadaan yang sama. Hal ini dikenal dengan nama asas pengecualian Pauli. Asas ini menjelaskan banyak sifat elektron.
Partikel maya
Para fisikawan percaya bahwa ruang kosong mungkin secara berkesinambungan menciptakan banyak pasang partikel maya seperti positron dengan elektron, yang dengan cepat memusnahkan satu sama lainnya setelah tercipta. Kombinasi variasi energi yang diperlukan untuk menciptakan partikel-partikel ini beserta waktu keberadaan partikel ini berada dalam ambang pendeteksian seperti yang dinyatakan oleh Prinsip ketidakpastian Heisenberg, ΔE·Δt ≥ ħ. Energi yang diperlukan untuk menciptakan partikel maya ini, ΔE, dapat "dipinjam" dari keadaan vakum untuk periode waktu Δt, sedemikian perkalian keduanya tidak lebih dari nilai konstanta Planck tereduksi, ħ ≈ 6,6 × 10-16 eV·s. Sehingga untuk elektron maya, Δt terlamanya adalah 1,3 × 10−21 s.
Ketika pasangan elektron-positron maya terbentuk, gaya coulomb dari medan listrik sekitar elektron menyebabkan positron yang tercipta tertarik ke elektron awal manakala elektron yang tercipta mengalami gaya tolak. Ini menyebabkan polarisasi vakum. Pada dasarnya, keadaan vakum berperilaku seperti media yang memiliki permitivitas dielektrik lebih besar dari satu. Sehingga muatan efektif sebuah elektron biasanya lebih kecil daripada nilai aslinya, dan muatan akan berkurang dengan meningkatnya jarak dari elektron. Polarisasi ini dikonfirmasi secara eksperimental pada tahun 1997 menggunakan pemercepat partikel Jepang. Partikel-partikel maya menyebabkan efek pemerisaian untuk massa elektron.
Interaksi dengan partikel maya juga menjelaskan penyimpangan momen magnetik intrinsik elektron sebesar 0,1% dari magneton Bohr. Kesesuaian yang sangat tepat antara perbedaan yang diprediksikan ini dengan nilai percobaan dipandang sebagai pencapaian besar elektrodinamika kuantum.
Dalam fisika klasik, momentum sudut dan momen magnetik suatu objek bergantung pada dimensi fisikanya. Oleh karena itu, konsep elektron tak berdimensi yang memiliki momentum sudut dan momen magnetik tampaknya tidak konsisten. Paradoks ini dapat dijelaskan menggunakan pembentukan foton maya dalam medan listrik yang dihasilkan oleh elektron. Foton-foton maya ini menyebabkan elektron bergeser secara getar-getir (dinamakan Zitterbewegung), yang mengakibatkan gerak melingkar dengan presesi. Gerak ini menghasilkan momen magnetik dan spin elektron. Dalam atom, penciptaan foton maya ini menjelaskan geseran Lamb yang terpantau pada garis spektrum.
Interaksi
Elektron menghasilkan medan listrik yang menarik partikel bermuatan positif seperti proton dan menolak partikel lain yang bermuatan negatif. Kekuatan gaya tarik/tolak ini ditentukan oleh Hukum Coulomb. Ketika elektron bergerak, ia menghasilkan medan magnetik. Hukum Ampère-Maxwell menghubungkan medan magnetik dengan gerak massa elektron (arus listrik) terhadap seorang pengamat. Medan elektromagnetik partikel bermuatan yang bergerak diekspresikan menggunakan potensial Liénard–Wiechert, yang berlaku bahkan untuk partikel yang bergerak mendekati kecepatan cahaya.
Ketika sebuah elektron bergerak melalui medan magnetik, gaya Lorentz akan memengaruhi arah lintasan elektron tegak lurus terhadap bidang medan magnet dan kecepatan elektron. Gaya sentripetal ini menyebabkan lintasan elektron berbentuk heliks. Percepatan yang dihasilkan dari gerak melengkung ini menginduksi elektron untuk memancarkan energi dalam bentuk radiasi sinkrotron. Emisi energi ini kemudian dapat mementalkan elektron, dikenal sebagai Gaya Abraham-Lorentz-Dirac, yang menciptakan gesekan yang memperlambat elektron. Gaya ini disebabkan oleh reaksi balik medan elektron terhadap dirinya sendiri.
Dalam elektrodinamika kuantum, interaksi elektromagnetik antara partikel dimediasi oleh foton. Elektron terisolasi yang tidak dipercepat tidak dapat memancar ataupun menyerap foton; apabila ia menyerap atau memancarkan foton, ini berarti pelanggaran hukum kekekalan energi dan momentum. Walau demikian, foton maya dapat mentransfer momentum antar dua partikel bermuatan. Adalah pertukaran foton maya ini yang menghasilkan gaya Coulomb. Emisi energi dapat terjadi ketika elektron yang bergerak dibelokkan oleh sebuah partikel bermuatan seperti proton. Percepatan elektron menghasilkan pancaran radiasi Bremsstrahlung.
Tumbukan lenting antara sebuah foton (cahaya) dengan sebuah elektron bebas disebut sebagai hamburan Compton. Tumbukan ini menghasilkan transfer momentum dan transfer energi antar partikel, yang mengubah panjang gelombang foton sejumlah geseran Compton. Besaran maksimum geseran panjang gelombang ini adalah h/mec, yang dikenal sebagai panjang gelombang Compton. Untuk sebuah elektron, ini bernilai 2,43 × 10−12 m. Apabila panjang gelombang cahayanya panjang (contohnya panjang gelombang cahaya tampak adalah 0,4–0,7 μm), geseran panjang gelombang menjadi sangat kecil. Interaksi antara cahaya dengan elektron bebas seperti ini disebut sebagai hamburan Thomson.
Kekuatan relatif interaksi elektromagnetik antara dua partikel bermuatan seperti elektron dengan proton diberikan oleh konstanta struktur halus. Nilai konstanta ini tidak memiliki dimensi dan merupakan nisbah dua energi: energi elektrostatik tarikan (ataupun tolakan) pada pemisahan satu panjang gelombang Compton dengan energi rihat muatan. Ia bernilai α ≈ 7,297353 × 10−3, ataupun kira-kira sama dengan 1⁄137.
Ketika elektron dan positron bertumbukan, keduanya akan memusnahkan satu sama lainnya, menghasilkan dua atau lebih sinar foton gama. Jika elektron dan positronnya memiliki momentum yang dapat diabaikan, atom positronium dapat terbentuk sebelum pemusnahan, menghasilkan dua atau tiga foton sinar gama berenergi sebesar 1,022 MeV. Di sisi lain, foton berenergi tinggi dapat berubah menjadi elektron dan positron kembali dalam suatu proses yang dinamakan produksi pasangan, namun hanya terjadi dengan keberadaan partikel bermuatan di dekatnya, seperti inti atom.
Atom dan molekul
Elektron dapat terikat pada inti atom melalui gaya tarik menarik Coulomb. Suatu sistem berelektron banyak yang terikat pada inti atom disebut sebagai atom. Jika jumlah elektron berbeda dari muatan listrik inti, atom tersebut dinamakan sebagai ion. Perilaku elektron terikat yang seperti gelombang dideskripsikan menggunakan fungsi matematika yang disebut orbital atom. Tiap-tiap orbital atom memiliki satu set bilangan kuantumnya sendiri, yaitu energi, momentum sudut, dan proyeksi momentum sudut. Menurut asas pengecualian Pauli, tiap orbital hanya dapat diduduki oleh dua elektron, yang harus berbeda dalam bilangan kuantum spinnya.
Elektron dapat berpindah dari satu orbital ke orbital lainnya melalui emisi ataupun absorpsi foton yang energinya sesuai dengan perbedaan potensial antar orbital. Metode perpindahan orbital lainnya meliputi pertumbukan dengan partikel elektron lain dan efek Auger. Agar dapat melepaskan diri dari atom, energi elektron haruslah ditingkatkan melebihi energi pengikatannya. Ini terjadi pada efek fotolistrik, di mana foton yang berenergi lebih tinggi dari energi ionisasi atom diserap oleh elektron.
Momentum sudut orbital elektron terkuantisasi. Oleh karena elektron bermuatan, ia menghasilkan momen magnetik orbital yang proposional terhadap momentum sudut. Keseluruhan momen magnetik sebuah atom adalah setera dengan jumlah vektor momen magnetik orbital dan momen magnetik spin keseluruhan elektron dan inti atom. Namun, momen magnetik inti sangatlah kecil dan dapat diabaikan jika dibandingkan dengan elektron. Momen magnetik dari dua elektron yang menduduki orbital yang sama (disebut elektron berpasangan) akan saling meniadakan.
Ikatan kimia antaratom terjadi sebagai akibat dari interaksi elektromagnetik, sebagaimana yang dijelaskan oleh hukum mekanika kuantum. Ikatan yang terkuat terbentuk melalui perkongsian elektron maupun transfer elektron di antara atom-atom, mengizinkan terbentuknya molekul. Dalam molekul, pegerakan elektron dipengaruhi oleh beberapa inti atom dan elektron menduduki orbital molekul, sama halnya dengan elektron yang menduduki orbital atom pada atom bebas. Faktor mendasar pada struktur molekul adalah keberadaan pasangan elektron. Kedua elektron yang berpasangan memiliki spin yang berlawanan, mengizinkan keduanya menduduki orbital molekul yang sama tanpa melanggar asas pengecualian Pauli. Orbital-orbital molekul yang berbeda memiliki distribusi spasial rapatan elektron yang berbeda pula. Sebagai contohnya, pada elektron berpasangan yang terlibat dalam ikatan, elektron dapat ditemukan dengan probabilitas yang tinggi disekitar daerah inti atom tertentu yang sempit, manakala pada elektron berpasangan yang tidak terlibat dalam ikatan, ia dapat terdistribusi pada ruang yang luas di sekitar inti atom.
Konduktivitas
Jika sebuah benda memiliki elektron yang berlebih atau kurang dari yang diperlukan untuk menyeimbangkan muatan inti atom yang positif, benda tersebut akan memiliki muatan listrik. Ketika terdapat elektron berlebih, benda tersebut dikatakan bermuatan negatif. Apabila terdapat elektron yang kurang dari jumlah proton dalam inti atom, benda tersebut dikatakan bermuatan positif. Ketika jumlah elektron dan jumlah proton adalah sama, muatan keduanya meniadakan satu sama lainnya dan benda tersebut dikatakan bermuatan netral. Benda makro dapat menjadi bermuatan listrik melalui penggosokan dan menghasilkan efek tribolistrik.
Elektron tunggal yang bergerak dalam vakum diistilahkan sebagai elektron bebas. Elektron-elektron dalam logam juga berperilaku seolah-olah bebas. Dalam kenyataannya, partikel yang umumnya diistilahkan elektron dalam logam dan padatan lainnya merupakan kuasi-elektron-kuasi-partikel, yang memiliki muatan listrik, spin, dan momen magnetik yang sama dengan elektron asli, namun bermassa berbeda. Ketika elektron bebas bergerak dalam vakum ataupun dalam logam, ia akan menghasilkan aliran muatan yang disebut sebagai arus listrik. Arus listrik ini kemudian akan menghasilkan medan magnetik. Sebaliknya, arus dapat diciptakan pula dengan mengubah medan magnetik. Interaksi ini dinyatakan secara matematis menggunakan persamaan Maxwell.
Pada suhu tertentu, tiap-tiap material memiliki konduktivitas listrik yang menentukan nilai arus listriknya ketika potensial listrik dialirkan kepadanya. Contoh benda yang memiliki konduktivitas listrik yang baik (disebut konduktor) misalnya emas dan tembaga, sedangkan gelas dan teflon adalah konduktor yang buruk. Dalam material dielektrik, elektron tetap terikat pada atom penyusunnya dan material tersebut berperilaku seperti insulator. Sebaiknya logam memiliki struktur pita elektronik yang mengandung pita elektronik yang terisi sebagian. Keberadaan pita tersebut mengizinkan elektron dalam logam berperilaku seolah-olah bebas (elektron terdelokalisasi). Elektron yang terdelokalisasi ini tidak terikat pada atom apapun, sehingga ketika dialiri medan listrik, elektron tersebut akan bergerak bebas seperti gas (gas fermi) melalui material tersebut seperti elektron bebas.
Oleh karena tumbukan antara elektron dengan atom, kecepatan hanyutan elektron dalam konduktor memiliki kisaran milimeter per detik. Namun, kecepatan rambatan elektron biasanya adalah sekitar 75% kecepatan cahaya. Ini terjadi karena sinyal elektrik merambat sebagai gelombang, yang kecepatannya tergantung dari konstanta dielektrik material atau bahan.
Logam merupakan konduktor panas yang baik, utamanya disebabkan oleh elektron terdelokalisasi yang bebas untuk mentranspor energi termal antaratom. Namun, berbeda dengan konduktivitas listrik, konduktivitas termal logam hampir tidak tergantung pada suhu. Konduktivitas termal diekspresikan secara matematis menurut hukum Wiedemann-Franz, yang menyatakan bahwa rasio konduktivitas termal terhadap konduktivitas listrik berbanding lurus terhadap temperatur. Kebalauan termal dalam kisi logam meningkatkan resistivitas listrik material, sehingganya membuat arus listrik tergantung pada temperatur.
Ketika didinginkan di bawah temperatur kritis, material dapat mengalami transisi fase yang menyebabkannya kehilangan semua resistivitas arus listrik. Hal ini dinamakan superkonduktivitas. Dalam teori BCS, perilaku ini dimodelkan oleh pasangan elektron yang memasuki keadaan kuantum kondensat Bose-Einstein. Pasangan Cooper ini memiliki gerakan yang dikopling oleh materi sekitar via getaran kekisi yang disebut fonon, sehingga elektron dapat menghindari tumbukan dengan atom-atom material yang menciptakan hambatan listrik. (Pasangan Cooper memiliki jari-jari sekitar 100 nm, sehingga dapat bertumpang tindih satu sama lain.) Walaupun begitu, mekanisme mengenai bagaimana superkonduktor temperatur tinggi bekerja masih belumlah terpecahkan.
Elektron yang berada dalam padatan konduktor, yang sendirinya juga merupakan kuasipartikel, ketika dikungkung secara ketat pada temperatur yang mendekati nol absolut, akan berperilaku seolah-olah terbelah lebih jauh menjadi dua kuasipartikel: spinon dan holon. Spinon memiliki spin dan momen magnetik, sedangkan holon memiliki muatan listrik.
Gerak dan energi
Menurut teori relativitas khusus Einstein, seiring dengan bertambahnya kecepatan elektron mendekati kecepatan cahaya, massa relativitas elektron akan meningkat menurut pemantau, sehingga membuatnya semakin sulit mempercepat diri dari kerangka acuan pemantau. Kecepatan elektron dapat mendekati, tetapi tidak dapat mencapai, kecepatan cahaya dalam vakum senilai c. Namun, ketika elektron yang bergerak mendekati kecepatan cahaya c dimasukkan ke dalam media dielektrik seperti air, kecepatan cahaya lokal secara signifikan kurang dari c, sehingganya elektron bergerak melebihi kecepatan cahaya dalam medium tersebut. Ketika elektron berinteraksi dengan medium tersebut, interaksi ini akan menghasilkan pendaran cahaya yang dinamakan radiasi Cherenkov.
Efek relativitas khusus ini didasarkan pada faktor Lorentz, didefinisikan sebagai dengan v adalah kecepatan partikel. Energi kinetik Ke sebuah elektron yang bergerak dengan kecepatan v adalah:
dengan me adalah massa elektron. Sebagai contohnya, pemercepat linear Stanford dapat mempercepat elektron mencapai 51 GeV. Angka memiliki nilai γ sebesar hampir 100.000, karena massa sebuah elektron adalah 0,51 MeV/c2. Momentum relativistik elektron ini 100.000 kali lebih besar daripada momentum yang diprediksikan oleh mekanika klasik untuk sebuah elektron yang bergerak dengan kecepatan yang sama.
Oleh karena elektron dapat berperilaku seperti gelombang, ia akan memiliki karakteristik panjang gelombang de Broglie. Nilai ini adalah λe = h/p dengan h adalah konstanta Planck dan p adalah momentum. Untuk 51 GeV elektron di atas, panjang gelombangnya adalah sekitar 2,4 × 10−17 m. Nilai ini cukup kecil untuk menjelajahi struktur yang lebih kecil dari inti atom.
Post a Comment for "Karakteristik Elektron"
Silahkan berkomentar disini